Equation of Continuity
\[\begin{align} & {{i}_{entering}}=-{{i}_{leaving}} \\ & \Rightarrow \frac{\partial q}{\partial t}=-J\cdot d\vec{S} \\ & \Rightarrow \frac{\partial q}{\partial t}+J\cdot d\vec{S}=0 \\ & \Rightarrow \frac{\partial \rho dV}{\partial t}+J\cdot d\vec{S}=0 \\ & \Rightarrow \frac{\partial \int{\rho dV}}{\partial t}+\int{\left( \nabla \cdot \vec{J} \right)dV}=0 \\ & \Rightarrow \int{\frac{\partial \rho }{\partial t}dV}+\int{\left( \nabla \cdot \vec{J} \right)dV}=0 \\ & \Rightarrow \left( \nabla \cdot \vec{J} \right)+\frac{\partial \rho }{\partial t}=0 \\ \end{align}\]Derivation of Maxwell's first field eqaution
\[\begin{align} & \oint\limits_{S}{\vec{E}\cdot d\vec{S}}=\phi \\ & \Rightarrow \oint\limits_{S}{\vec{E}\cdot d\vec{S}}=\frac{q}{{{\varepsilon }_{0}}} \\ & \Rightarrow \oint\limits_{S}{\vec{E}\cdot d\vec{S}}=\frac{\int{dq}}{{{\varepsilon }_{0}}} \\ & \Rightarrow \oint\limits_{S}{\vec{E}\cdot d\vec{S}}=\frac{\int{\rho dV}}{{{\varepsilon }_{0}}} \\ & \Rightarrow \int\limits_{V}{\left( \nabla \cdot \vec{E} \right)}\,dV=\frac{\int{\rho dV}}{{{\varepsilon }_{0}}} \\ & \Rightarrow \nabla \cdot \vec{E}=\frac{\rho }{{{\varepsilon }_{0}}} \\ \end{align}\]Derivation of Maxwell 2nd Law
Since the Magnetic flux through any surface does not exist
\[\begin{align} & \oint\limits_{S}{\vec{B}\cdot d\vec{S}}=\phi =0 \\ & \Rightarrow \int\limits_{V}{\left( \nabla \cdot \vec{B} \right)}\,dV=0 \\ & \Rightarrow \nabla \cdot \vec{B}=0 \\ \end{align}\]Derivation of Maxwells 3rd Law
\[\begin{align}
& \int\limits_{l}{\vec{E}\cdot d\vec{l}}=-\frac{\partial \phi }{\partial t} \\
& \int\limits_{S}{\left( \nabla \times \vec{E} \right)\cdot dS}=-\frac{\partial }{\partial t}\left( \int\limits_{S}{\vec{B}\cdot d\vec{S}} \right) \\
& \Rightarrow \int\limits_{S}{\left( \nabla \times \vec{E} \right)\cdot dS}=-\left( \int\limits_{S}{\frac{\partial \vec{B}}{\partial t}\cdot d\vec{S}} \right) \\
& \Rightarrow \nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\
\end{align}\]
Maxwell's 4th equation
\[\begin{align} & \int\limits_{l}{\vec{B}\cdot d\vec{l}}={{\mu }_{0}}{{i}_{enclosed}} \\ & \Rightarrow \int\limits_{l}{\vec{B}\cdot d\vec{l}}={{\mu }_{0}}\int\limits_{S}{\vec{J}\cdot d\vec{S}} \\ & \Rightarrow \int\limits_{S}{\left( \nabla \times \vec{B} \right)\cdot d\vec{S}}=\int\limits_{S}{{{\mu }_{0}}\vec{J}\cdot d\vec{S}} \\ & \Rightarrow \nabla \times \vec{B}={{\mu }_{0}}\vec{J} \\ \end{align}\]
If we take divergence on both sides
\[\begin{align}
& \Rightarrow \nabla \cdot \left( \nabla \times \vec{B} \right)={{\mu }_{0}}\left( \nabla \cdot \vec{J} \right) \\
& \Rightarrow 0={{\mu }_{0}}\left( \nabla \cdot \vec{J} \right) \\
& \Rightarrow \nabla \cdot \vec{J}=0 \\
& \because \frac{\partial \rho }{\partial t}+\nabla \cdot \vec{J}=0 \\
& \Rightarrow -\frac{\partial \rho }{\partial t}=0 \\
& \Rightarrow \rho \text{ is either zero or constant }\text{.} \\
& \text{Hence charge is zero or independent of time} \\
\end{align}\]
Since Electric field can be space and time dependent , Maxwell Modified Ampere's Law to include another current called displacement current which exists in insulators due to changing electric field. Hence ,
\[\begin{align}
& \vec{J}={{{\vec{J}}}_{C}}+{{{\vec{J}}}_{D}} \\
& \Rightarrow \nabla \times \vec{B}={{\mu }_{0}}\left( {\vec{J}} \right) \\
& \Rightarrow \nabla \times \vec{B}={{\mu }_{0}}\left( {{{\vec{J}}}_{C}}+{{{\vec{J}}}_{D}} \right) \\
& \Rightarrow \nabla \times \vec{B}={{\mu }_{0}}{{{\vec{J}}}_{C}}+{{\mu }_{0}}{{{\vec{J}}}_{D}} \\
& \Rightarrow \nabla \cdot \left( \nabla \times \vec{B} \right)={{\mu }_{0}}\left( \nabla \cdot {{{\vec{J}}}_{C}} \right)+{{\mu }_{0}}\left( \nabla \cdot {{{\vec{J}}}_{D}} \right) \\
& \Rightarrow 0={{\mu }_{0}}\left( -\frac{\partial \rho }{\partial t} \right)+{{\mu }_{0}}\left( \nabla \cdot {{{\vec{J}}}_{D}} \right) \\
& \Rightarrow \nabla \cdot {{{\vec{J}}}_{D}}=\frac{\partial \rho }{\partial t} \\
& =\frac{\partial }{\partial t}\left( {{\varepsilon }_{0}}\left( \nabla \cdot \vec{E} \right) \right) \\
& =\frac{\partial }{\partial t}\left( \nabla \cdot {{\varepsilon }_{0}}\vec{E} \right) \\
& =\nabla \cdot {{\varepsilon }_{0}}\frac{\partial \vec{E}}{\partial t} \\
& \Rightarrow {{{\vec{J}}}_{D}}={{\varepsilon }_{0}}\frac{\partial \vec{E}}{\partial t} \\
\end{align}\]
Alternative method to find Displacement Current
\[\begin{align} & {{J}_{D}}=\frac{i}{A} \\ & =\frac{\frac{\partial q}{\partial t}}{A} \\ & =\frac{1}{A}\frac{\partial q}{\partial t} \\ & =\frac{1}{A}\frac{\partial CV}{\partial t} \\ & =\frac{1}{A}\frac{{{\varepsilon }_{0}}A}{d}\frac{\partial V}{\partial t} \\ & ={{\varepsilon }_{0}}\frac{\partial }{\partial t}\left( \frac{V}{d} \right) \\ & \therefore {{J}_{D}}={{\varepsilon }_{0}}\frac{\partial E}{\partial t} \\ \end{align}\]Gauge Transformation conditions
\[\begin{align} & {{\phi }_{2}}={{\phi }_{1}}+\alpha \\ & {{{\vec{A}}}_{2}}={{{\vec{A}}}_{1}}+\beta \\ & \because {{E}_{2}}={{E}_{1}} \\ & \Rightarrow -\nabla {{\phi }_{2}}-\frac{\partial {{A}_{2}}}{\partial t}=-\nabla {{\phi }_{1}}-\frac{\partial {{A}_{1}}}{\partial t} \\ & \Rightarrow -\nabla \left( {{\phi }_{1}}+\alpha \right)-\frac{\partial }{\partial t}\left( {{A}_{1}}+\beta \right)=-\nabla {{\phi }_{1}}-\frac{\partial {{A}_{1}}}{\partial t} \\ & \Rightarrow -\nabla {{\phi }_{1}}-\frac{\partial {{A}_{1}}}{\partial t}-\nabla \alpha -\frac{\partial \beta }{\partial t}=-\nabla {{\phi }_{1}}-\frac{\partial {{A}_{1}}}{\partial t} \\ & \Rightarrow -\nabla \alpha -\frac{\partial \beta }{\partial t}=0 \\ & \Rightarrow \nabla \alpha =-\frac{\partial \beta }{\partial t} \\ & \because {{{\vec{B}}}_{2}}={{{\vec{B}}}_{1}} \\ & \Rightarrow \nabla \times {{{\vec{A}}}_{2}}=\nabla \times {{{\vec{A}}}_{1}} \\ & \Rightarrow \nabla \times \left( {{{\vec{A}}}_{1}}+\beta \right)=\nabla \times {{{\vec{A}}}_{1}} \\ & \Rightarrow \nabla \times \beta =0 \\ & \Rightarrow \beta =-\nabla \lambda \\ & \Rightarrow \nabla \alpha =-\frac{\partial \beta }{\partial t} \\ & \Rightarrow \nabla \alpha =-\frac{\partial }{\partial t}\left( -\nabla \lambda \right) \\ & \Rightarrow \alpha =\frac{\partial \lambda }{\partial t} \\ & \therefore {{\phi }_{2}}={{\phi }_{1}}+\frac{\partial \lambda }{\partial t} \\ & {{{\vec{A}}}_{2}}={{{\vec{A}}}_{1}}-\nabla \lambda \\ \end{align}\]Wave Equations in terms of Electric field
\[\begin{align} & \nabla \times \left( \nabla \times \vec{E} \right)=-\nabla \times \frac{\partial \vec{B}}{\partial t} \\ & \Rightarrow \nabla \left( \nabla \cdot \vec{E} \right)-\left( \nabla \cdot \nabla \right)\vec{E}=-\frac{\partial }{\partial t}\left( \nabla \times \vec{B} \right) \\ & \Rightarrow \nabla \left( \frac{\rho }{{{\varepsilon }_{0}}} \right)-{{\nabla }^{2}}\vec{E}=-\frac{\partial }{\partial t}\left( {{\mu }_{0}}\vec{J}+{{\mu }_{0}}{{\varepsilon }_{0}}\frac{\partial E}{\partial t} \right)\left( \because \nabla \cdot \vec{E}=\frac{\rho }{{{\varepsilon }_{0}}} \right) \\ & \Rightarrow 0-{{\nabla }^{2}}\vec{E}=-{{\mu }_{0}}\frac{\partial \vec{J}}{\partial t}-{{\mu }_{0}}{{\varepsilon }_{0}}\frac{{{\partial }^{2}}\vec{E}}{\partial {{t}^{2}}} \\ & \Rightarrow {{\nabla }^{2}}\vec{E}-{{\mu }_{0}}{{\varepsilon }_{0}}\frac{{{\partial }^{2}}\vec{E}}{\partial {{t}^{2}}}-{{\mu }_{0}}\frac{\partial \vec{J}}{\partial t}=0 \\ & \Rightarrow {{\nabla }^{2}}\vec{E}-{{\mu }_{0}}{{\varepsilon }_{0}}\frac{{{\partial }^{2}}\vec{E}}{\partial {{t}^{2}}}-{{\mu }_{0}}\sigma \frac{\partial \vec{E}}{\partial t}=0 \\ \end{align}\]Wave Equation in terms of Magnetic Field
\[\begin{align} & \nabla \times \vec{B}={{\mu }_{0}}\vec{J}+{{\mu }_{0}}{{\varepsilon }_{0}}\frac{\partial \vec{E}}{\partial t} \\ & \Rightarrow \nabla \times \left( \nabla \times \vec{B} \right)={{\mu }_{0}}\nabla \times \vec{J}+{{\mu }_{0}}{{\varepsilon }_{0}}\frac{\partial }{\partial t}\left( \nabla \times \vec{E} \right) \\ & \Rightarrow \nabla \left( \nabla \cdot \vec{B} \right)-\left( \nabla \cdot \nabla \right)\vec{B}={{\mu }_{0}}\sigma \left( \nabla \times \vec{E} \right)+{{\mu }_{0}}{{\varepsilon }_{0}}\frac{\partial }{\partial t}\left( \nabla \times \vec{E} \right) \\ & \Rightarrow \nabla \left( 0 \right)-{{\nabla }^{2}}\vec{B}={{\mu }_{0}}\sigma \left( -\frac{\partial \vec{B}}{\partial t} \right)+{{\mu }_{0}}{{\varepsilon }_{0}}\frac{\partial }{\partial t}\left( -\frac{\partial \vec{B}}{\partial t} \right) \\ & \Rightarrow -{{\nabla }^{2}}\vec{B}=-{{\mu }_{0}}\sigma \frac{\partial \vec{B}}{\partial t}-{{\mu }_{0}}{{\varepsilon }_{0}}\frac{{{\partial }^{2}}\vec{B}}{\partial {{t}^{2}}} \\ & \Rightarrow {{\nabla }^{2}}\vec{B}-{{\mu }_{0}}{{\varepsilon }_{0}}\frac{{{\partial }^{2}}\vec{B}}{\partial {{t}^{2}}}-{{\mu }_{0}}\sigma \frac{\partial \vec{B}}{\partial t}=0 \\ \end{align}\]Wave Equation in terms of Electromagnetic Potentials
\[\begin{align} & \nabla \cdot \vec{E}=\frac{\rho }{{{\varepsilon }_{0}}} \\ & \Rightarrow \nabla \cdot \left( -\nabla \phi -\frac{\partial \vec{A}}{\partial t} \right)=\frac{\rho }{{{\varepsilon }_{0}}} \\ & \Rightarrow -{{\nabla }^{2}}\phi -\frac{\partial }{\partial t}\left( \nabla \cdot \vec{A} \right)=\frac{\rho }{{{\varepsilon }_{0}}} \\ & \left( \nabla \cdot \vec{A} \right)=0\,\,\,\,\,\,\left( \text{Coulomb Condition} \right) \\ & \Rightarrow {{\nabla }^{2}}\phi =-\frac{\rho }{{{\varepsilon }_{0}}} \\ \end{align}\]Wave equation in terms of \( \phi\) and \( A\)
\[\begin{align} & \nabla \times \vec{B}={{\mu }_{0}}\vec{J}+{{\mu }_{0}}{{\varepsilon }_{0}}\frac{\partial \vec{E}}{\partial t} \\ & \Rightarrow \nabla \times \left( \nabla \times \vec{A} \right)={{\mu }_{0}}\vec{J}+{{\mu }_{0}}{{\varepsilon }_{0}}\frac{\partial \vec{E}}{\partial t} \\ & \Rightarrow \nabla \left( \nabla \cdot \vec{A} \right)-{{\nabla }^{2}}\vec{A}-{{\mu }_{0}}{{\varepsilon }_{0}}\frac{\partial \vec{E}}{\partial t}={{\mu }_{0}}\vec{J} \\ & \Rightarrow \nabla \left( \nabla \cdot \vec{A} \right)-{{\nabla }^{2}}\vec{A}-{{\mu }_{0}}{{\varepsilon }_{0}}\frac{\partial }{\partial t}\left( -\nabla \phi -\frac{\partial \vec{A}}{\partial t} \right)={{\mu }_{0}}\vec{J} \\ & \Rightarrow \nabla \left( \nabla \cdot \vec{A} \right)-{{\nabla }^{2}}\vec{A}+\nabla \left( {{\mu }_{0}}{{\varepsilon }_{0}}\frac{\partial \phi }{\partial t} \right)+{{\mu }_{0}}{{\varepsilon }_{0}}\frac{{{\partial }^{2}}\vec{A}}{\partial {{t}^{2}}}={{\mu }_{0}}\vec{J} \\ & \Rightarrow -{{\nabla }^{2}}\vec{A}+{{\mu }_{0}}{{\varepsilon }_{0}}\frac{{{\partial }^{2}}\vec{A}}{\partial {{t}^{2}}}+\nabla \left( \nabla \cdot \vec{A}+{{\mu }_{0}}{{\varepsilon }_{0}}\frac{\partial \phi }{\partial t} \right)={{\mu }_{0}}\vec{J} \\ & \nabla \cdot \vec{A}+{{\mu }_{0}}{{\varepsilon }_{0}}\frac{\partial \phi }{\partial t}\left( \text{Lorentz}\,\text{Conditin} \right) \\ & \Rightarrow -{{\nabla }^{2}}\vec{A}+{{\mu }_{0}}{{\varepsilon }_{0}}\frac{{{\partial }^{2}}\vec{A}}{\partial {{t}^{2}}}={{\mu }_{0}}\vec{J} \\ & \Rightarrow {{\nabla }^{2}}\vec{A}-{{\mu }_{0}}{{\varepsilon }_{0}}\frac{{{\partial }^{2}}\vec{A}}{\partial {{t}^{2}}}=-{{\mu }_{0}}\vec{J} \\ \end{align}\] \[\begin{align} & -{{\nabla }^{2}}\phi -\frac{\partial }{\partial t}\left( -{{\mu }_{0}}{{\varepsilon }_{0}}\frac{\partial \phi }{\partial t} \right)=\frac{\rho }{{{\varepsilon }_{0}}} \\ & \Rightarrow -{{\nabla }^{2}}\phi +{{\mu }_{0}}{{\varepsilon }_{0}}\frac{{{\partial }^{2}}\phi }{\partial {{t}^{2}}}=\frac{\rho }{{{\varepsilon }_{0}}} \\ & \Rightarrow {{\nabla }^{2}}\phi -{{\mu }_{0}}{{\varepsilon }_{0}}\frac{{{\partial }^{2}}\phi }{\partial {{t}^{2}}}=\frac{\rho }{{{\varepsilon }_{0}}} \\ \end{align}\]Special Cases
- When \( \rho \) is zero The eqaution reduces to laplace Equation
- When \( \rho \) is zero
Pyonting Theorem
Poynting Theorem Explains How Electromagnetic Energy Travels Through Space. It Relates changes in Energy Density to the Poynting Vector, which indicates the direction and Amount of Energy transferred in the Electromagnetic fields. The rate of energy transfer (per unit volume) from a region of space equals the rate of workdone on a charge distribution plus the energy flux leaving that region. Another statement : - "The decrease in the electromagnetic energy per unit time in a certain volume is equal to the sum of work done by the field forces and the net outward flux per unit time". The net power flowing out of a given volume v is equal to the time rate of decrease in the energy stored within volume v minus the ohmic power dissipated. \[\begin{align} dW &=\vec{F}\cdot d\vec{l} \\ & =dq\vec{E}\cdot d\vec{l} \\ & =dq\vec{E}\cdot \vec{v}dt \\ & =\rho dV\vec{E}\cdot \vec{v}dt \\ & =\left( \vec{E}\cdot \rho \vec{v} \right)dVdt \\ & =\left( \vec{E}\cdot \vec{J} \right)dVdt \\ & \frac{dW}{dt}=\left( \vec{E}\cdot \vec{J} \right)dV \\ & =\left( \vec{E}\cdot \left( \frac{\nabla \times \vec{B}-{{\mu }_{0}}{{\varepsilon }_{0}}\frac{\partial \vec{E}}{\partial t}}{{{\mu }_{0}}} \right) \right)dV \\ & =\left( \frac{\vec{E}\cdot \left( \nabla \times \vec{B} \right)-{{\mu }_{0}}{{\varepsilon }_{0}}\left( \vec{E}\cdot \frac{\partial \vec{E}}{\partial t} \right)}{{{\mu }_{0}}} \right)dV \\ & =\left( \frac{-\nabla \cdot \left( \vec{E}\times \vec{B} \right)+\vec{B}\cdot \left( \nabla \times \vec{E} \right)-{{\mu }_{0}}{{\varepsilon }_{0}}\left( \vec{E}\cdot \frac{\partial \vec{E}}{\partial t} \right)}{{{\mu }_{0}}} \right)dV \\ & =\left( \frac{-\nabla \cdot \left( \vec{E}\times \vec{B} \right)-\vec{B}\cdot \frac{\partial \vec{B}}{\partial t}-{{\mu }_{0}}{{\varepsilon }_{0}}\left( \vec{E}\cdot \frac{\partial \vec{E}}{\partial t} \right)}{{{\mu }_{0}}} \right)dV \\ & =\left( -{{\varepsilon }_{0}}\left( \vec{E}\cdot \frac{\partial \vec{E}}{\partial t} \right)-\frac{1}{{{\mu }_{0}}}\vec{B}\cdot \frac{\partial \vec{B}}{\partial t}-\frac{\nabla \cdot \left( \vec{E}\times \vec{B} \right)}{{{\mu }_{0}}} \right)dV \\ & =\left( -\frac{{{\varepsilon }_{0}}}{2}\left( \vec{E}\cdot \frac{\partial \vec{E}}{\partial t}+\frac{\partial E}{\partial t}\cdot \vec{E} \right)-\frac{1}{{{\mu }_{0}}}\vec{B}\cdot \frac{\partial \vec{B}}{\partial t}-\frac{\nabla \cdot \left( \vec{E}\times \vec{B} \right)}{{{\mu }_{0}}} \right)dV \\ & =\left( -\frac{{{\varepsilon }_{0}}}{2}\frac{\partial }{\partial t}\left( \vec{E}\cdot \vec{E} \right)-\frac{1}{{{\mu }_{0}}}\frac{1}{2}\frac{\partial }{\partial t}\left( \vec{B}\cdot \vec{B} \right)-\frac{\nabla \cdot \left( \vec{E}\times \vec{B} \right)}{{{\mu }_{0}}} \right)dV \\ & =\left( -\frac{\partial }{\partial t}\left( \frac{1}{2}{{\varepsilon }_{0}}{{E}^{2}}+\frac{{{B}^{2}}}{2{{\mu }_{0}}} \right)-\frac{\nabla \cdot \left( \vec{E}\times \vec{B} \right)}{{{\mu }_{0}}} \right)dV \\ & =-\frac{\partial }{\partial t}\left( \frac{1}{2}{{\varepsilon }_{0}}{{E}^{2}}+\frac{{{B}^{2}}}{2{{\mu }_{0}}} \right)dV-\frac{\nabla \cdot \left( \vec{E}\times \vec{B} \right)}{{{\mu }_{0}}}dV \\ & =-\frac{\partial {{u}_{em}}}{\partial t}dV-\nabla \cdot \vec{S}\,dV \\ & =-\frac{\partial {{U}_{em}}}{\partial t}-\int\limits_{S}{\vec{S}\cdot dA} \\ \end{align}\]Skin depth of EM wave
It is the depth in the medium after which the amplitude of the electromagnetic wave reduces to 1/e times
\[\begin{align} & {{\nabla }^{2}}E-{{\mu }_{0}}{{\varepsilon }_{0}}\frac{{{\partial }^{2}}E}{\partial {{t}^{2}}}-{{\mu }_{0}}\sigma \frac{\partial E}{\partial t}=0 \\ & \Rightarrow \left( -{{k}^{2}} \right)E-{{\mu }_{0}}{{\varepsilon }_{0}}\left( -{{\omega }^{2}} \right)E-{{\mu }_{0}}\sigma \left( -i\omega \right)E=0 \\ & \Rightarrow -{{k}^{2}}E+{{\mu }_{0}}{{\varepsilon }_{0}}{{\omega }^{2}}E+i{{\mu }_{0}}\sigma \omega E=0 \\ & \Rightarrow -{{k}^{2}}E+{{\mu }_{0}}{{\varepsilon }_{0}}{{\omega }^{2}}E+i{{\mu }_{0}}\sigma \omega E=0 \\ & \Rightarrow {{k}^{2}}E={{\mu }_{0}}{{\varepsilon }_{0}}{{\omega }^{2}}E+i{{\mu }_{0}}\sigma \omega E \\ & \Rightarrow {{k}^{2}}E={{\mu }_{0}}{{\varepsilon }_{0}}{{\omega }^{2}}E\left( 1+i\frac{\sigma }{{{\varepsilon }_{0}}\omega } \right) \\ & \Rightarrow {{k}^{2}}={{\mu }_{0}}{{\varepsilon }_{0}}{{\omega }^{2}}\left( 1+i\frac{\sigma E}{{{\varepsilon }_{0}}\omega E} \right) \\ & \Rightarrow k=\sqrt{{{\mu }_{0}}{{\varepsilon }_{0}}}\omega {{\left( 1+i\frac{\sigma E}{{{\varepsilon }_{0}}\omega E} \right)}^{1/2}} \\ & =\sqrt{{{\mu }_{0}}{{\varepsilon }_{0}}}\omega {{\left( 1+i\frac{{{J}_{C}}}{{{\varepsilon }_{0}}\left( -i\omega \right)E} \right)}^{1/2}} \\ & =\sqrt{{{\mu }_{0}}{{\varepsilon }_{0}}}\omega {{\left( 1+i\frac{{{J}_{C}}}{{{\varepsilon }_{0}}\frac{\partial E}{\partial t}} \right)}^{1/2}} \\ & =\sqrt{{{\mu }_{0}}{{\varepsilon }_{0}}}\omega {{\left( 1+i\frac{{{J}_{C}}}{\left| {{J}_{D}} \right|} \right)}^{1/2}} \\ & {{J}_{C}}>>>>\left| {{J}_{D}} \right| \\ & k=\sqrt{{{\mu }_{0}}{{\varepsilon }_{0}}}\omega {{\left( i\frac{{{J}_{C}}}{\left| {{J}_{D}} \right|} \right)}^{1/2}} \\ & =\sqrt{{{\mu }_{0}}{{\varepsilon }_{0}}}\omega {{\left( \frac{\sigma }{{{\varepsilon }_{0}}\omega } \right)}^{1/2}}{{\left( i \right)}^{1/2}} \\ & =\sqrt{{{\mu }_{0}}\sigma \omega }{{\left( \cos \frac{\pi }{2}+i\sin \frac{\pi }{2} \right)}^{1/2}} \\ & =\sqrt{{{\mu }_{0}}\sigma \omega }\left( \cos \frac{\pi }{4}+i\sin \frac{\pi }{4} \right) \\ & =\sqrt{{{\mu }_{0}}\sigma \omega }\left( \frac{1+i}{\sqrt{2}} \right) \\ & =\sqrt{\frac{{{\mu }_{0}}\sigma \omega }{2}}\left( 1+i \right) \\ & =\alpha +i\alpha \\ & E={{E}_{0}}{{e}^{i\left( \vec{k}\cdot \vec{r}-\omega t \right)}} \\ & ={{E}_{0}}{{e}^{i\left( kx-\omega t \right)}} \\ & ={{E}_{0}}{{e}^{i\left( \left( \alpha +i\alpha \right)x-\omega t \right)}} \\ & ={{E}_{0}}{{e}^{-\alpha x}}{{e}^{i\left( \alpha x-\omega t \right)}} \\ & =E_{0}^{'}{{e}^{i\left( \alpha x-\omega t \right)}} \\ & \Rightarrow E_{0}^{'}={{E}_{0}}{{e}^{-\alpha x}} \\ & \Rightarrow \frac{{{E}_{0}}}{e}={{E}_{0}}{{e}^{-\alpha \delta }} \\ & \Rightarrow {{e}^{-1}}={{e}^{-\alpha \delta }} \\ & \Rightarrow \delta =\frac{1}{\alpha } \\ & \Rightarrow \delta =\sqrt{\frac{2}{{{\mu }_{0}}\omega \sigma }} \\ \end{align}\]Average Pyonting Vector
\[\begin{align} \left\langle S \right\rangle & =\left\langle \frac{\vec{E}\times \vec{B}}{{{\mu }_{0}}} \right\rangle \\ & =\left\langle \frac{EB\operatorname{Sin}90}{v\mu } \right\rangle \\ & =\frac{\left\langle EB \right\rangle }{v\mu } \\ & =\frac{\left\langle {{E}^{2}} \right\rangle }{v\mu } \\ & =\frac{\left\langle E_{0}^{2}{{\cos }^{2}}\left( kx-\omega t \right) \right\rangle }{v\mu } \\ \end{align}\]Magnetic Vector Potential
Magnetic Vector Potential is defined as the vector field the curl of which gives the magnetic field intensity, mathematically , \( \vec{B}=\nabla\times \vec{A}\)
- The Curl of it gives Magnetic field intensity
- If its divergence is zero it will represent coulomb gauge condition
- The relation between magnetic vector potential and electric scalar potential is :\[ \vec{A}=\dfrac{v}{c^2}\phi\]
- The vector potential is not unique
- Its relation with current density is:\[ \vec{A}(\vec{r}) = \frac{\mu_0}{4\pi} \int \frac{\vec{J}(\vec{r}')}{|\vec{r}-\vec{r}'|} \, d^3r' \]
Expression for Magnetic vector Potential
\[\begin{align} & d\vec{B}=\frac{{{\mu }_{0}}}{4\pi }\frac{id\vec{l}\times \vec{r}}{{{r}^{3}}} \\ \Rightarrow \vec{B}& =\int{\frac{{{\mu }_{0}}}{4\pi }\frac{id\vec{l}\times \vec{r}}{{{r}^{3}}}} \\ & =\frac{{{\mu }_{0}}}{4\pi }\int{\frac{id\vec{l}\times \vec{r}}{{{r}^{3}}}} \\ & =\frac{{{\mu }_{0}}}{4\pi }\int{id\vec{l}\times \left( \frac{{\vec{r}}}{{{r}^{3}}} \right)} \\ & =\frac{{{\mu }_{0}}}{4\pi }\int{id\vec{l}\times \left( \frac{{\hat{r}}}{{{r}^{2}}} \right)} \\ & =\frac{{{\mu }_{0}}}{4\pi }\int{id\vec{l}\times \left( -\nabla \left( \frac{1}{r} \right) \right)} \\ & =\frac{{{\mu }_{0}}}{4\pi }\int{\left( \nabla \left( \frac{1}{r} \right)\times id\vec{l} \right)} \\ & =\frac{{{\mu }_{0}}}{4\pi }\int{\left( \nabla \times \left( \frac{id\vec{l}}{r} \right) \right)} \\ & =\nabla \times \int{\frac{{{\mu }_{0}}}{4\pi }\left( \frac{id\vec{l}}{r} \right)} \\ & =\nabla \times \vec{A} \\ \Rightarrow \vec{A}&=\frac{{{\mu }_{0}}}{4\pi }\int{\frac{id\vec{l}}{r}} \end{align}\]Magnetic Field Intensity due to a current carrying straight wire
\[\begin{align} d\vec{A} &=\frac{{{\mu }_{0}}}{4\pi }\frac{idy}{R} \\ & =\frac{{{\mu }_{0}}}{4\pi }\frac{idy}{\sqrt{{{r}^{2}}+{{y}^{2}}}} \\ \Rightarrow \vec{A}& =\frac{{{\mu }_{0}}}{4\pi }\int\limits_{-L/2}^{+L/2}{\frac{idy}{\sqrt{{{r}^{2}}+{{y}^{2}}}}} \\ & =\frac{{{\mu }_{0}}}{4\pi }\int\limits_{-L/2}^{+L/2}{\frac{idy}{\sqrt{{{r}^{2}}+{{y}^{2}}}}} \\ & =\frac{{{\mu }_{0}}i}{4\pi }\left[ \ln \left( y+\sqrt{{{r}^{2}}+{{y}^{2}}} \right) \right]_{-L/2}^{+L/2} \\ & =\frac{{{\mu }_{0}}i}{4\pi }\left( \ln \frac{\left( \frac{L}{2}+\sqrt{{{r}^{2}}+{{\frac{L}{4}}^{2}}} \right)}{\left( -\frac{L}{2}+\sqrt{{{r}^{2}}+{{\frac{L}{4}}^{2}}} \right)} \right) \\ & =\frac{{{\mu }_{0}}i}{4\pi }\left( \ln \frac{\left( L+\sqrt{4{{r}^{2}}+{{L}^{2}}} \right)}{\left( -L+\sqrt{4{{r}^{2}}+{{L}^{2}}} \right)} \right) \\ & =\frac{{{\mu }_{0}}i}{4\pi }\left( \ln \frac{\left( L+L\sqrt{1+\frac{4{{r}^{2}}}{{{L}^{2}}}} \right)}{\left( -L+L\sqrt{1+\frac{4{{r}^{2}}}{{{L}^{2}}}} \right)} \right) \\ & =\frac{{{\mu }_{0}}i}{4\pi }\left( \ln \frac{\left( L+L\left( 1+\frac{2{{r}^{2}}}{{{L}^{2}}} \right) \right)}{\left( -L+L\left( 1+\frac{2{{r}^{2}}}{{{L}^{2}}} \right) \right)} \right) \\ & =\frac{{{\mu }_{0}}i}{4\pi }\left( \ln \frac{\left( 2L+\frac{2{{r}^{2}}}{L} \right)}{\left( -L+L+\frac{2{{r}^{2}}}{L} \right)} \right) \\ & =\frac{{{\mu }_{0}}i}{4\pi }\left( \ln \frac{\left( 2L+\frac{2{{r}^{2}}}{L} \right)}{\left( \frac{2{{r}^{2}}}{L} \right)} \right) \\ & =\frac{{{\mu }_{0}}i}{4\pi }\left( \ln \frac{\left( 2L \right)}{\left( \frac{2{{r}^{2}}}{L} \right)} \right) \\ & =\frac{{{\mu }_{0}}i}{4\pi }\ln \left( \frac{2{{L}^{2}}}{2{{r}^{2}}} \right) \\ & =2\times \frac{{{\mu }_{0}}i}{4\pi }\ln \left( \frac{L}{r} \right) \\ & =\frac{{{\mu }_{0}}i}{2\pi }\ln \left( \frac{L}{r} \right)\hat{j} \\ \Rightarrow \vec{B} &=\nabla \times \vec{A} \\ & =\left( \begin{matrix} {\hat{r}} & {\hat{\theta }} & {\hat{z}} \\ \frac{\partial }{\partial r} & \frac{1}{r}\frac{\partial }{\partial r} & \frac{\partial }{\partial z} \\ {{A}_{r}} & {{A}_{\theta }} & {{A}_{z}} \\ \end{matrix} \right) \\ & =\left( \begin{matrix} {\hat{r}} & {\hat{\theta }} & {\hat{z}} \\ \frac{\partial }{\partial r} & \frac{1}{r}\frac{\partial }{\partial r} & \frac{\partial }{\partial z} \\ 0 & \frac{{{\mu }_{0}}i}{2\pi }\ln \left( \frac{L}{r} \right) & 0 \\ \end{matrix} \right) \\ & =\hat{z}\left( \frac{\partial }{\partial r}\frac{{{\mu }_{0}}i}{2\pi }\ln \left( \frac{L}{r} \right)-\frac{1}{r}\frac{\partial }{\partial r}\left( 0 \right) \right) \\ & \because \vec{B}=\left( -\frac{{{\mu }_{0}}i}{2\pi r} \right)\hat{z} \\ \end{align}\]Magnetic Field Intensity due to a current carrying loop of radius r
\[\begin{align} A &=\int{d{{A}_{y}}} \\ & =\int\limits_{0}^{2\pi }{\frac{{{\mu }_{0}}}{4\pi }}\frac{idl\cos \phi }{r'} \\ & =\frac{{{\mu }_{0}}i}{4\pi }\int\limits_{0}^{2\pi }{\frac{dl\cos \phi }{r'}} \\ & =\frac{{{\mu }_{0}}i}{4\pi }\int\limits_{0}^{2\pi }{\frac{ad\phi \cos \phi }{\sqrt{{{r}^{2}}+{{a}^{2}}-2ra\cos \alpha }}} \\ & =\frac{{{\mu }_{0}}i}{4\pi }\int\limits_{0}^{2\pi }{\frac{ad\phi \cos \phi }{{{r}^{2}}\sqrt{1+{{\frac{a}{{{r}^{2}}}}^{2}}-2\frac{a}{r}\cos \alpha }}} \\ & =\frac{{{\mu }_{0}}i}{4\pi }\int\limits_{0}^{2\pi }{\frac{ad\phi \cos \phi }{r\sqrt{1-2\frac{a}{r}\cos \alpha }}} \\ & =\frac{{{\mu }_{0}}i}{4\pi }\int\limits_{0}^{2\pi }{\frac{ad\phi \cos \phi }{r\left( 1-\frac{1}{2}\times \frac{2a}{r}\cos \alpha \right)}} \\ & =\frac{{{\mu }_{0}}i}{4\pi }\int\limits_{0}^{2\pi }{\frac{ad\phi \cos \phi }{r\left( 1-\frac{a}{r}\cos \alpha \right)}} \\ & =\frac{{{\mu }_{0}}i}{4\pi }\int\limits_{0}^{2\pi }{\frac{ad\phi \cos \phi }{r}}{{\left( 1-\frac{a}{r}\cos \alpha \right)}^{-1}} \\ & =\frac{{{\mu }_{0}}i}{4\pi }\int\limits_{0}^{2\pi }{\frac{ad\phi \cos \phi }{r}}\left( 1+\frac{a}{r}\cos \alpha \right) \\ & =\frac{{{\mu }_{0}}i}{4\pi }\int\limits_{0}^{2\pi }{\frac{ad\phi \cos \phi }{r}}\left( 1+\frac{a}{r}\frac{x\cos \phi }{r} \right) \\ & =\frac{{{\mu }_{0}}i}{4\pi }\int\limits_{0}^{2\pi }{\frac{ad\phi \cos \phi }{r}}\left( 1+\frac{ax\cos \phi }{{{r}^{2}}} \right) \\ & =\frac{{{\mu }_{0}}i}{4\pi }\int\limits_{0}^{2\pi }{\left( \frac{a\cos \phi }{r}+\frac{{{a}^{2}}x{{\cos }^{2}}\phi }{{{r}^{3}}} \right)}\,d\phi \\ & =\frac{{{\mu }_{0}}i}{4\pi }\left( 0+\frac{{{a}^{2}}x}{{{r}^{3}}}\pi \right) \\ & =\frac{{{\mu }_{0}}}{4\pi }\left( \frac{i\pi {{a}^{2}}x}{{{r}^{3}}} \right) \\ & =\frac{{{\mu }_{0}}}{4\pi }\left( \frac{mx}{{{r}^{3}}} \right) \\ & =\frac{{{\mu }_{0}}}{4\pi }\left( \frac{mr\sin \theta }{{{r}^{3}}} \right) \\ & =\frac{{{\mu }_{0}}}{4\pi }\left( \frac{\vec{m}\times \vec{r}}{{{r}^{3}}} \right) \\ \vec{B}& =\nabla \times \vec{A} \\ & =\nabla \times \left( \frac{{{\mu }_{0}}}{4\pi }\left( \frac{\vec{m}\times \vec{r}}{{{r}^{3}}} \right) \right) \\ & =\frac{{{\mu }_{0}}}{4\pi }\nabla \times \left( \vec{m}\times \frac{{\vec{r}}}{{{r}^{3}}} \right) \\ & =\frac{{{\mu }_{0}}}{4\pi }\left( \vec{m}\left( \nabla \centerdot \frac{{\vec{r}}}{{{r}^{3}}} \right)-\frac{{\vec{r}}}{{{r}^{3}}}\left( \nabla \centerdot \vec{m} \right)+\left( \frac{{\vec{r}}}{{{r}^{3}}}\centerdot \nabla \right)\vec{m}-\left( \vec{m}\centerdot \nabla \right)\frac{{\vec{r}}}{{{r}^{3}}} \right) \\ & =\frac{{{\mu }_{0}}}{4\pi }\left( \vec{m}\left( \nabla \centerdot \frac{{\hat{r}}}{{{r}^{2}}} \right)-\frac{{\vec{r}}}{{{r}^{3}}}\left( \nabla \centerdot \vec{m} \right)+\left( \frac{{\vec{r}}}{{{r}^{3}}}\centerdot \nabla \right)\vec{m}-\left( \vec{m}\centerdot \nabla \right)\frac{{\vec{r}}}{{{r}^{3}}} \right) \\ & =\frac{{{\mu }_{0}}}{4\pi }\left( \vec{m}\left( 0 \right)-\frac{{\vec{r}}}{{{r}^{3}}}\left( 0 \right)+\left( \frac{{\vec{r}}}{{{r}^{3}}}\centerdot \nabla \right)\vec{m}-\left( \vec{m}\centerdot \nabla \right)\frac{{\vec{r}}}{{{r}^{3}}} \right) \\ & =\frac{{{\mu }_{0}}}{4\pi }\left( \left( \frac{{\vec{r}}}{{{r}^{3}}}\centerdot \nabla \right)\vec{m}-\left( \vec{m}\centerdot \nabla \right)\frac{{\vec{r}}}{{{r}^{3}}} \right) \\ & =\frac{{{\mu }_{0}}}{4\pi }\left( \left( \frac{x\partial }{{{r}^{3}}\partial x}+\frac{y\partial }{{{r}^{3}}\partial x}+\frac{z\partial }{{{r}^{3}}\partial z} \right)\vec{m}-\left( \vec{m}\centerdot \nabla \right)\frac{{\vec{r}}}{{{r}^{3}}} \right) \\ & =\frac{{{\mu }_{0}}}{4\pi }\left( 0-\left( \vec{m}\centerdot \nabla \right)\frac{{\vec{r}}}{{{r}^{3}}} \right) \\ & =-\frac{{{\mu }_{0}}}{4\pi }\left( \vec{m}\centerdot \nabla \right)\frac{{\vec{r}}}{{{r}^{3}}} \\ & =-\frac{{{\mu }_{0}}}{4\pi }\left( {{m}_{x}}\frac{\partial }{\partial x}+{{m}_{y}}\frac{\partial }{\partial y}+{{m}_{z}}\frac{\partial }{\partial z} \right)\frac{{\vec{r}}}{{{r}^{3}}} \\ & =-\frac{{{\mu }_{0}}}{4\pi }\left( {{m}_{x}}\frac{\partial }{\partial x}\left( \frac{{\vec{r}}}{{{r}^{3}}} \right)+{{m}_{y}}\frac{\partial }{\partial y}\left( \frac{{\vec{r}}}{{{r}^{3}}} \right)+{{m}_{z}}\frac{\partial }{\partial z}\left( \frac{{\vec{r}}}{{{r}^{3}}} \right) \right) \\ & =-\frac{{{\mu }_{0}}}{4\pi }\left( {{m}_{x}}\left( \frac{\hat{i}{{r}^{3}}-3rx\vec{r}}{{{r}^{6}}} \right)+{{m}_{y}}\left( \frac{\hat{j}{{r}^{2}}-3ry\vec{r}}{{{r}^{6}}} \right)+{{m}_{z}}\left( \frac{\hat{k}{{r}^{2}}-3rz\vec{r}}{{{r}^{6}}} \right) \right) \\ & =\frac{{{\mu }_{0}}}{4\pi }\left( \left( \frac{3{{m}_{x}}x\vec{r}}{{{r}^{5}}}+\frac{3{{m}_{y}}y\vec{r}}{{{r}^{5}}}+\frac{3{{m}_{z}}z\vec{r}}{{{r}^{5}}} \right)-\frac{{\vec{m}}}{{{r}^{3}}} \right) \\ & =\frac{{{\mu }_{0}}}{4\pi }\left( \left( \frac{3\left( \vec{m}\cdot \vec{r} \right)\vec{r}}{{{r}^{5}}} \right)-\frac{{\vec{m}}}{{{r}^{3}}} \right) \\ \end{align}\] \tag{5}Linerd wiechert Potentials
The Liénard–Wiechert potentials are the exact solutions of Maxwell’s equations that describe the scalar potential and the vector potential produced by a point charge moving arbitrarily in space with velocity They are extremely important in electrodynamics because they give the correct electric and magnetic fields due to an accelerated moving charge, including radiation.- They include both Coulomb-like near fields (falling off as \( 1/R^2 \) and radiation fields (falling off as \( 1/R \)
- When the charge is at rest, they reduce to the familiar Coulomb potential When the charge moves uniformly, they describe the boosted Coulomb field.
- When the charge accelerates, they naturally give rise to electromagnetic radiation.
Applications
- Radiation from accelerating charges (synchrotron radiation, bremsstrahlung, dipole radiation
- Foundation for understanding electromagnetic waves emitted by antennas.
- Starting point for deriving the Lienard formula for radiated power
\[
t_r = t - \frac{R}{c}, \qquad
\vec{R} = \vec{r} - \vec{r}_q(t_r), \qquad
R = |\vec{R}|, \quad \hat{R} = \frac{\vec{R}}{R}
\]
\[
\vec{E}(\vec{r},t) = \frac{q}{4\pi \epsilon_0}
\left[
\frac{(1 - \beta^2)(\hat{R} - \vec{\beta})}{\left(1 - \hat{R}\cdot\vec{\beta}\right)^3 R^2}
+ \frac{\hat{R} \times \left( (\hat{R} - \vec{\beta}) \times \dot{\vec{\beta}} \right)}{c \left(1 - \hat{R}\cdot\vec{\beta}\right)^3 R}
\right]_{t_r}
\]
\[
\vec{B}(\vec{r},t) = \hat{R} \times \vec{E}(\vec{r},t)
\]
\[
\vec{\beta} = \frac{\vec{v}(t_r)}{c},
\qquad
\dot{\vec{\beta}} = \frac{\vec{a}(t_r)}{c},
\qquad
\hat{R} = \frac{\vec{r} - \vec{r}_q(t_r)}{|\vec{r} - \vec{r}_q(t_r)|}
\]
\[
\vec{E}(\vec{r},t) = \frac{q}{4\pi \epsilon_0}
\left[
\frac{(1 - \beta^2)(\hat{R} - \vec{\beta})}{(1 - \hat{R}\cdot\vec{\beta})^3 R^2}
+ \frac{\hat{R} \times ((\hat{R} - \vec{\beta}) \times \dot{\vec{\beta}})}{c (1 - \hat{R}\cdot\vec{\beta})^3 R}
\right]_{t_r}
\]
\[
\vec{B}(\vec{r},t) = \hat{R} \times \vec{E}(\vec{r},t)
\]